# Interpretability and Explainability in Al

#### Ankita Jamdade

-Software/Machine Learning, AltaML -AI Education Intern and Machine Learning Associate, Vector Institute -Master of Data Science and AI, University of Waterloo

Reference: <u>https://www.xcally.com/news/interpretability-vs-explainability-understanding-the-importance-in-artificial-intelligence/</u>



## Agenda

Introduction to Interpretability and Explainability

Key Concepts

1.

2.

3.

4.

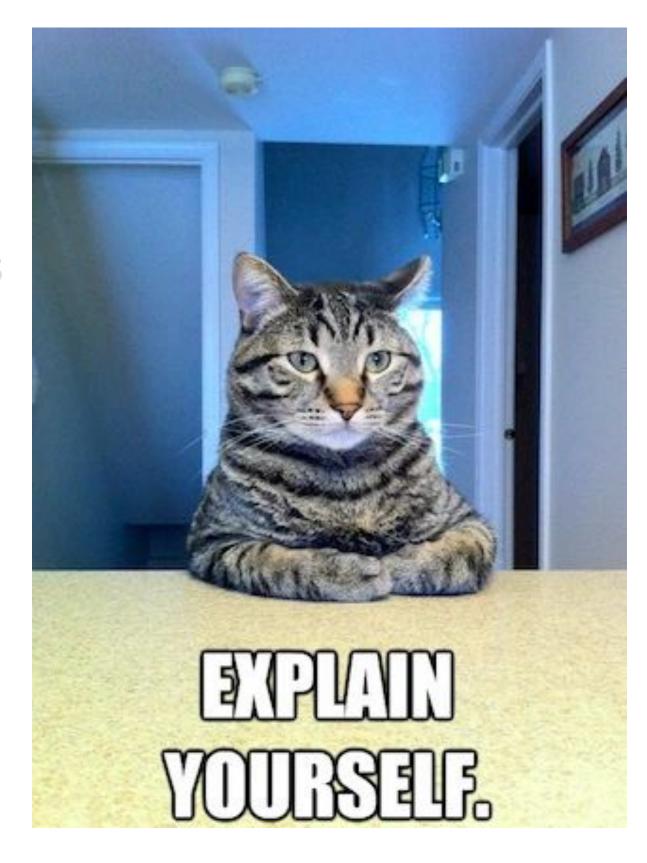
5.

Tools and Techniques

Ethical Considerations

Python Demo

## Introduction to Interpretability and Explainability



**Explainability** refers to the degree to which the behaviour of a model can be explained in human-understandable terms.

Hard to know how a result was arrived at, but you mostly know why.

**Interpretability** refers to the ease with which a human can understand the cause of a decision made by a machine learning model.

Easy to see how the algorithm arrived at its conclusion but not why each step of the decision process was created.

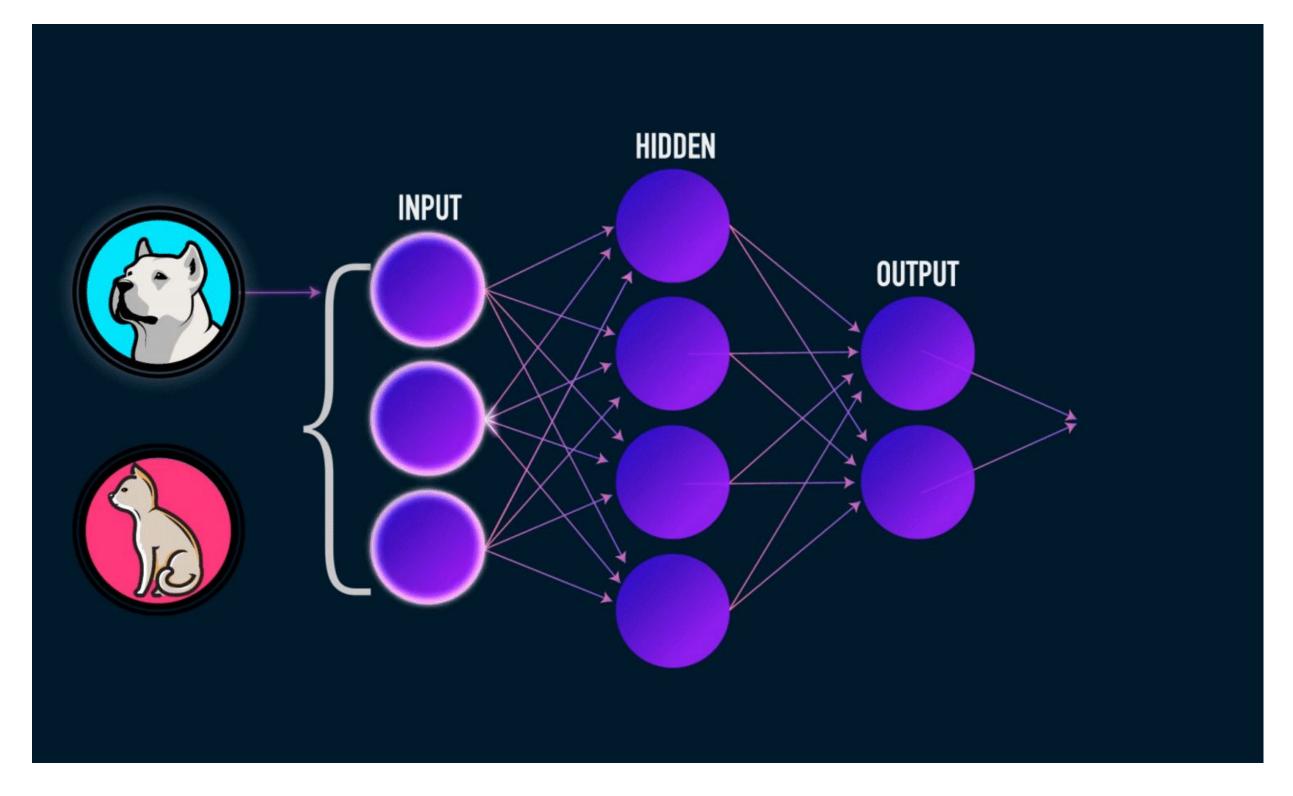
The terms *interpretability* and *explainability* are commonly interchangeable.



## **Explainable Machine Learning**

#### Explainable models are functions that are too complicated for a human to understand (Black-box models)

4



#### ANN trained on a given task to classify images of cats or dogs

Reference: https://medium.com/@shagunm1210/the-explainable-neural-network-8f95256dcddb

- Difficult to explain the relationships between the input features and the response (output).
- More neurons and layers more difficult to explain and identify what functions affect the output.

## Simple use-case: Wolf in the snow



Siberian Husky (Dog)

Wolf

## **Explainable Machine Learning**

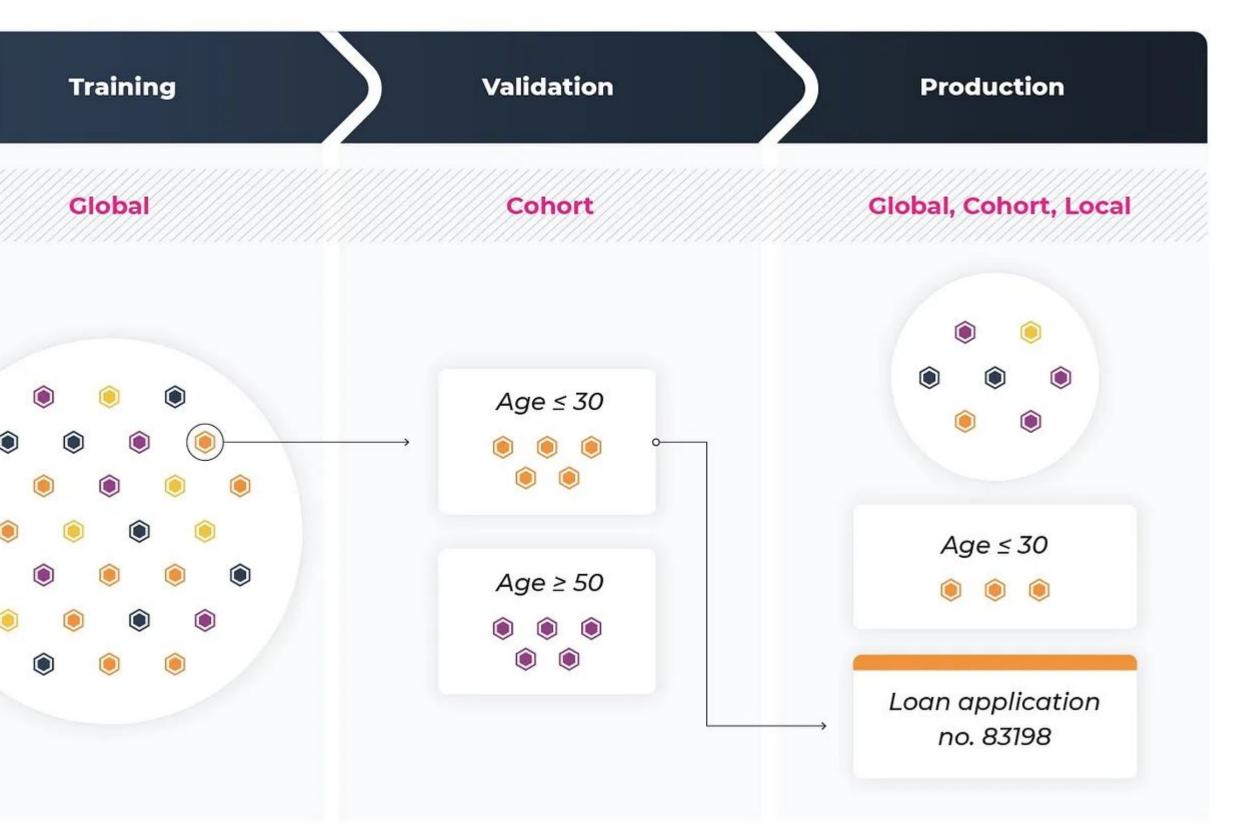
**Global Explainability:** Importance of feature contribution on the model predictions over all of the data.

6

**Cohort Explainability:** Importance of feature contribution on the model predictions over a subset of the data.

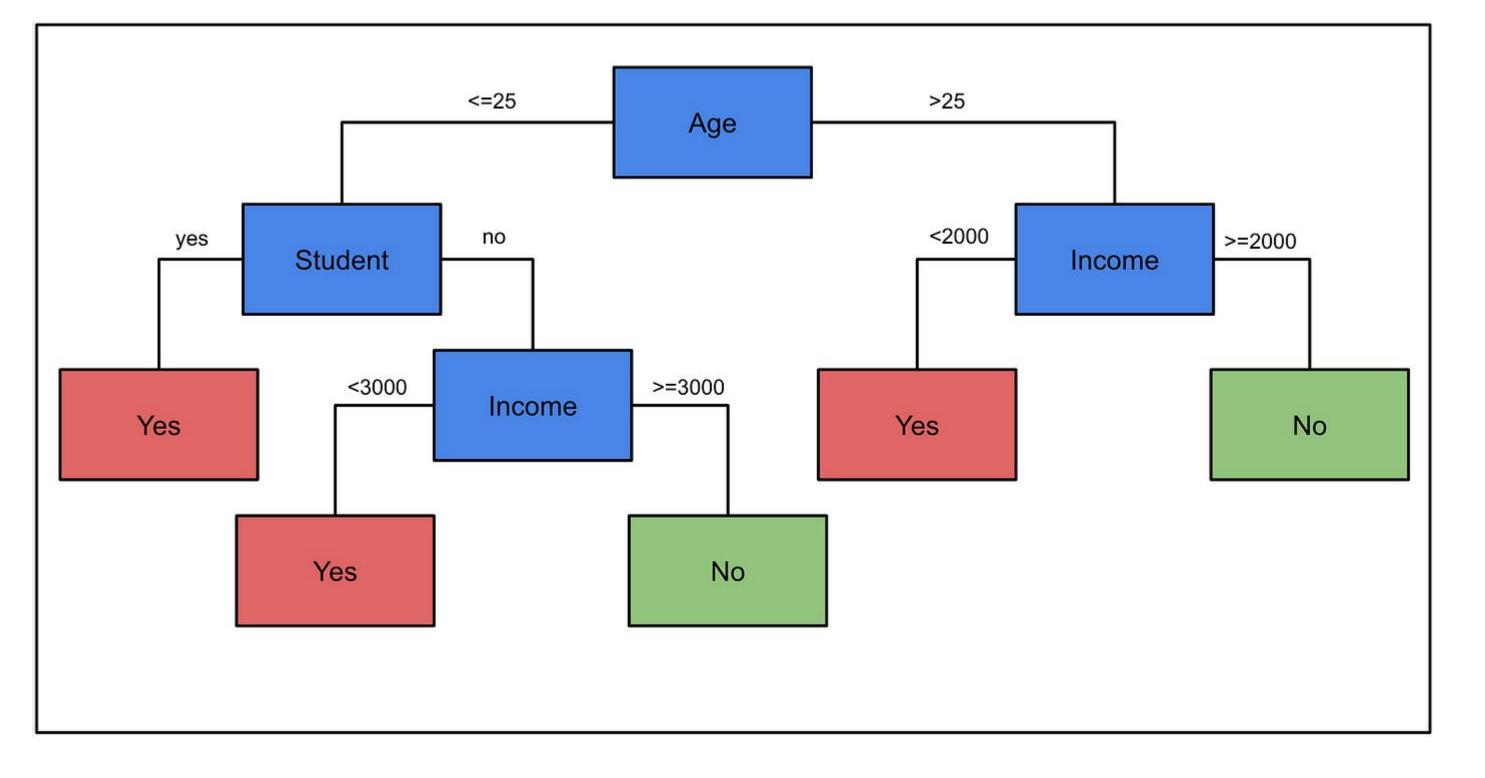
Local Explainability: Importance of feature contribution on the model predictions over a data point.

#### Explainability across the ML lifecycle



## Interpretable Machine Learning

Interpretable models can be understood by a human without any other aids/techniques.

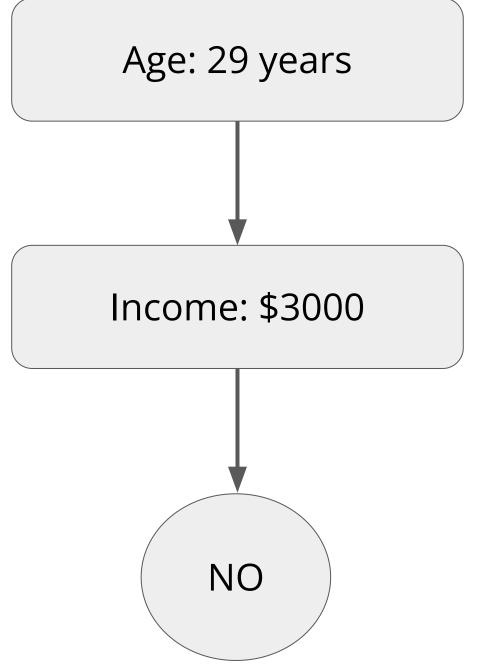


#### Decision Tree for Loan Default Predictions

Reference: https://towardsdatascience.com/interperable-vs-explainable-machine-learning-1fa525e12f48

7

Predicting whether loan will be defaulted



## Interpretable Machine Learning

Interpretable models can be understood by a human without any other aids/techniques.

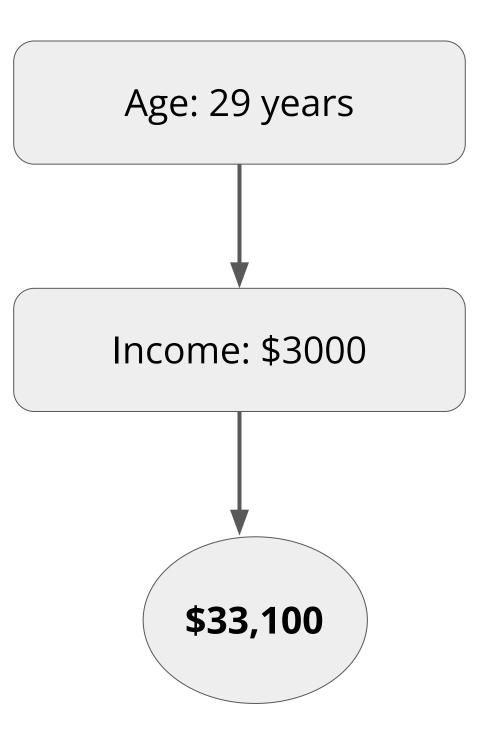
## Y = 100\*age + 10\*income + 200

- \$100 for every additional year of age
- \$10 for every additional dollar of income

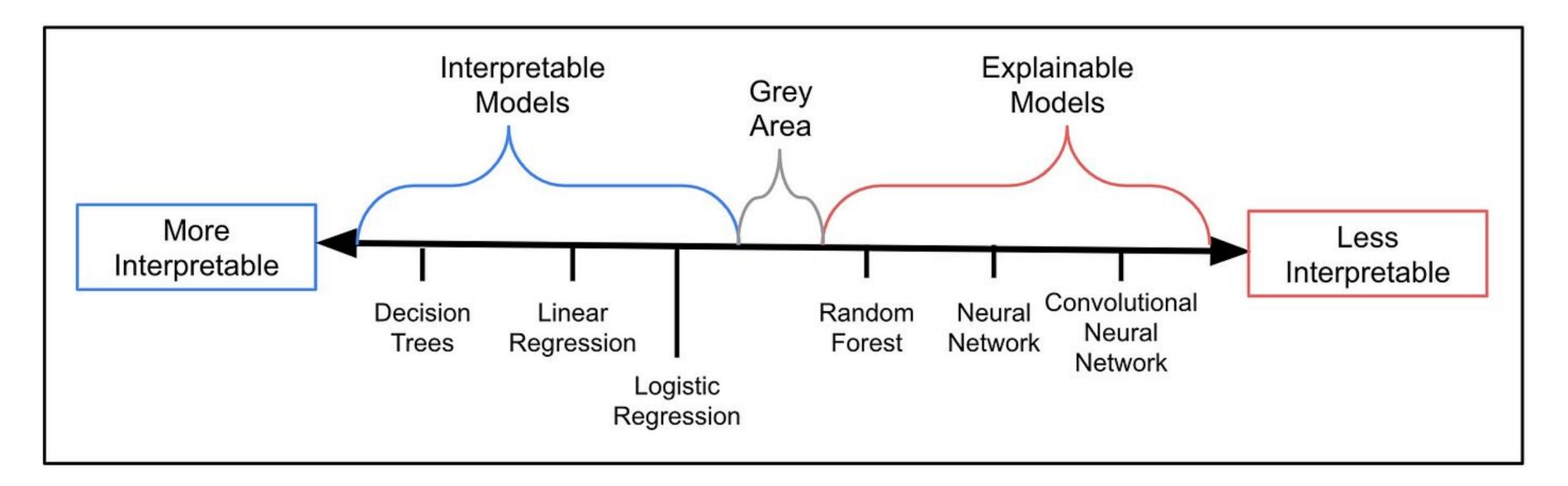
8

Predicting the maximum loan amount (Y)





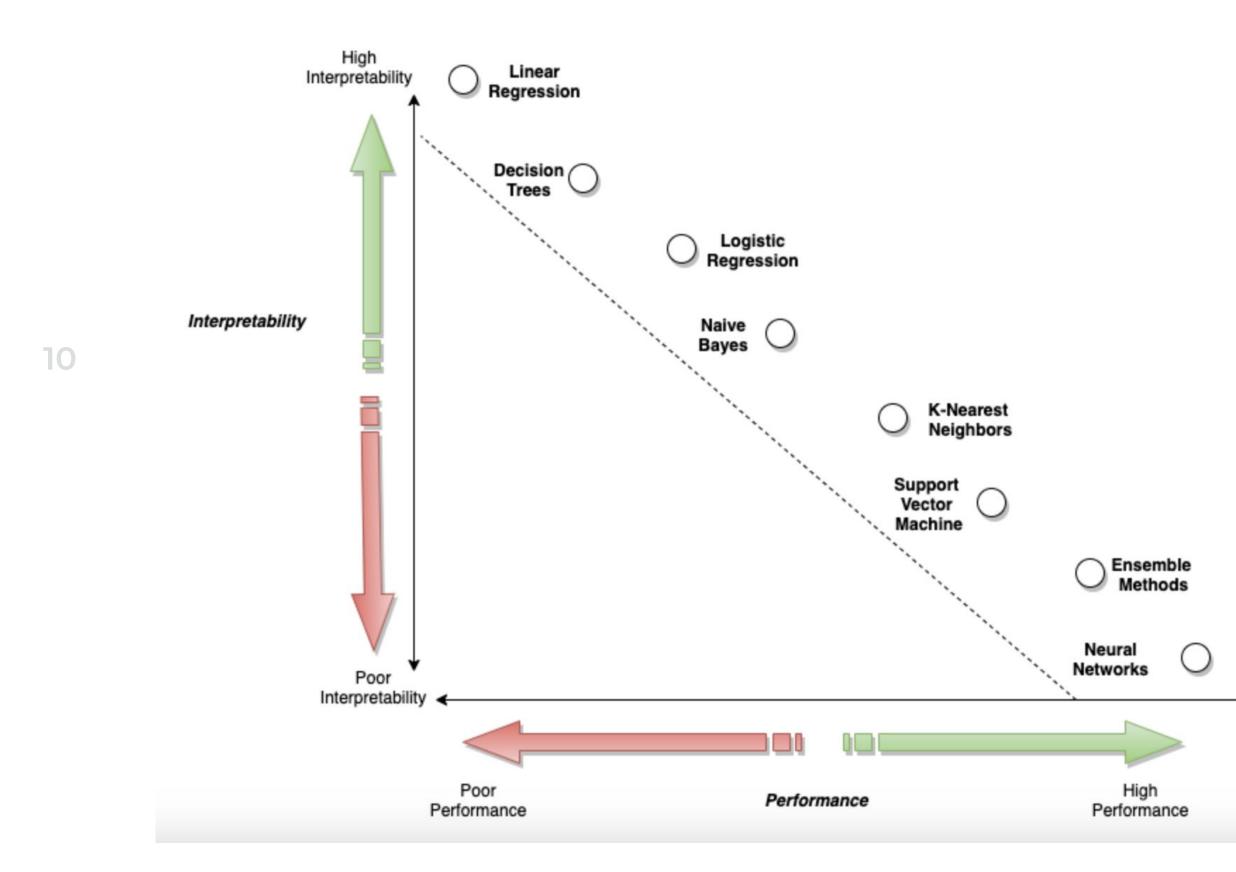
## **Interpretability Dilemma**



Example: A single Decision Tree or a Random forest with 2 trees is interpretable. But, is a Random forest with 100 trees interpretable?

The Interpretability Spectrum

## Interpretability versus performance trade-off



#### Interpretability versus performance trade-off given common ML algorithms

Reference: https://docs.aws.amazon.com/whitepapers/latest/model-explainability-aws-ai-ml/interpretability-versus-explainability.html

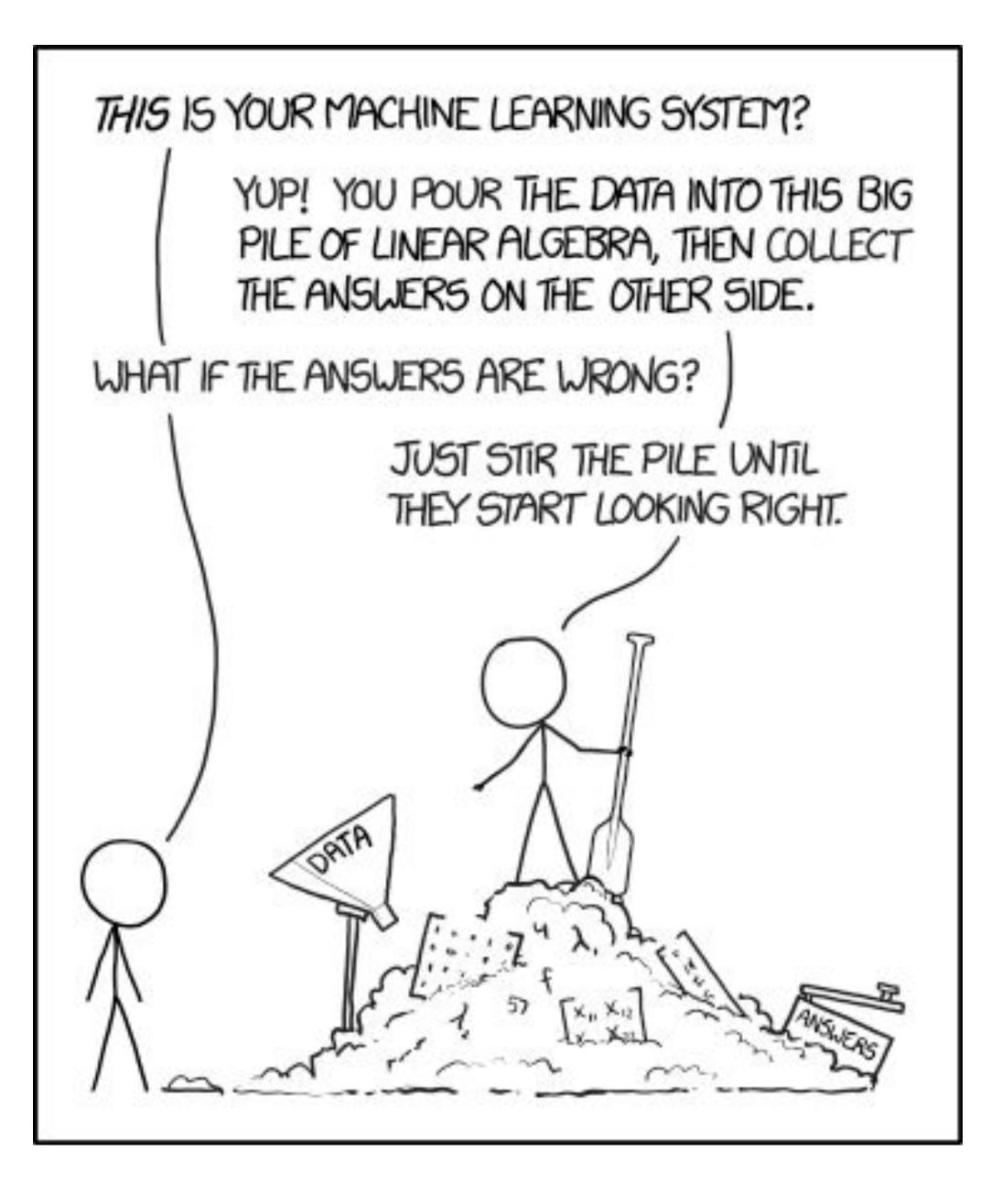
#### Is interpretability a hard business requirement?

- Regulations or business requirements for complete model transparency.

#### Can my dataset be used on a simpler model?

- If you can meet the objective using a simple AI/ML method with full transparency, select that approach.





## **Techniques to understand Explainability**

#### • SHAP

- Shapley Additive explanations

### • LIME

12

- Local Interpretable Model-Agnostic Explanations
- of the model

### • PDPs and ICE Plots

- Visualise the relationship between model features and the target variable
- Generally used when there are interactions between features

• Explains why a particular example differs from the global expectation from a model

• Attempts to understand how local perturbations in a model's inputs affect the end-prediction

## **SHAP (SHapley Additive exPlanations)**

SHAP values are based on Shapley values, a concept coming from game theory.

Imagine that we have a predictive model, then:

13

- the "game" is reproducing the outcome of the model.
- the "players" are the features included in the model.

## What Shapley does is quantifying the contribution that each player brings to the game

https://towardsdatascience.com/shap-explained-the-way-i-wish-someone-explained-it-to-me-ab81cc69ef30

## **SHAP (SHapley Additive exPlanations)**

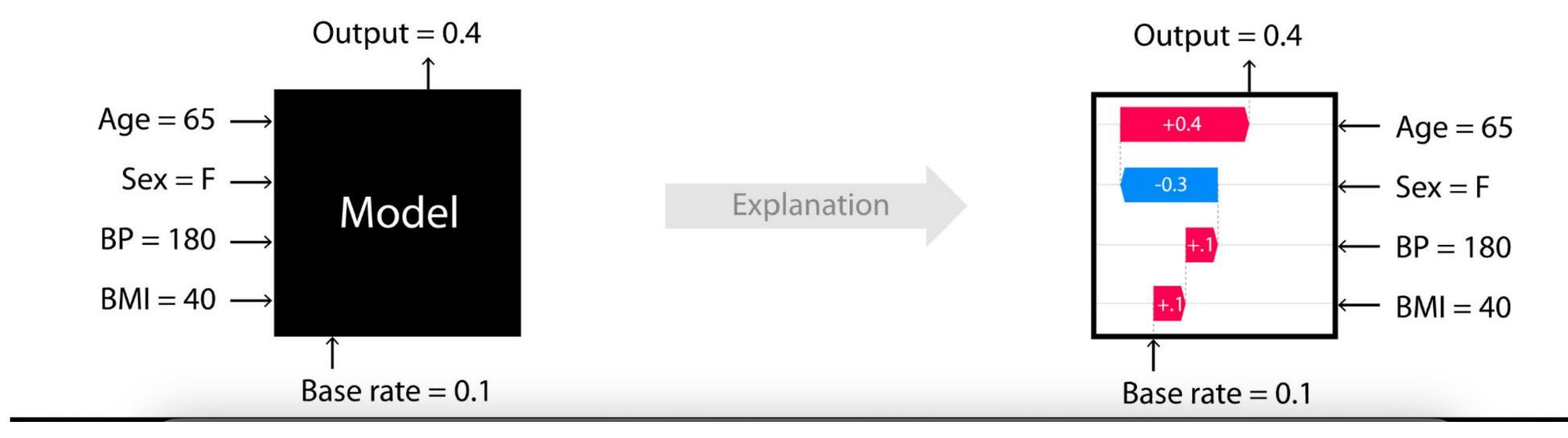
- Powerful **Python package** for understanding and debugging your models
- Tells us how each model feature contributes to an individual prediction
- By aggregating SHAP values, we can also understand trends across multiple predictions
- With a few lines of code, we are able to id our model
- SHAP Plots:

14

- Waterfall plot
- Force plots
- Mean SHAP plot
- Beeswarm plot
- Dependence plots

## • With a few lines of code, we are able to **identify and visualise important relationships** in







## **Ethical Considerations**

- Facial Recognition Leads To False Arrest Of Black Man In Detroit : NPR
- Amazon scraps secret AI recruiting tool that showed bias against women
- Microsoft Chat Bot Goes On Racist, Genocidal Twitter Rampage

16

• Apple Card algorithm sparks gender bias inquiry

Organizations must adopt standards, processes, and controls to make AI systems compliant and promote a culture of responsible, ethical, and trustworthy AI.

## Resources

- https://adataodyssey.com/courses/xai-with-python/
- https://cloud.google.com/explainable-ai
- https://cloud.google.com/vertex-ai/docs/explainable-<u>ai/overview</u>
- https://github.com/marcotcr/lime

17

- https://github.com/slundberg/shap
- https://medium.com/60-leaders/the-ethical-concerns -associated-with-the-general-adoption-of-ai-ab893e9 <u>b5196</u>



# SHAP DEMO



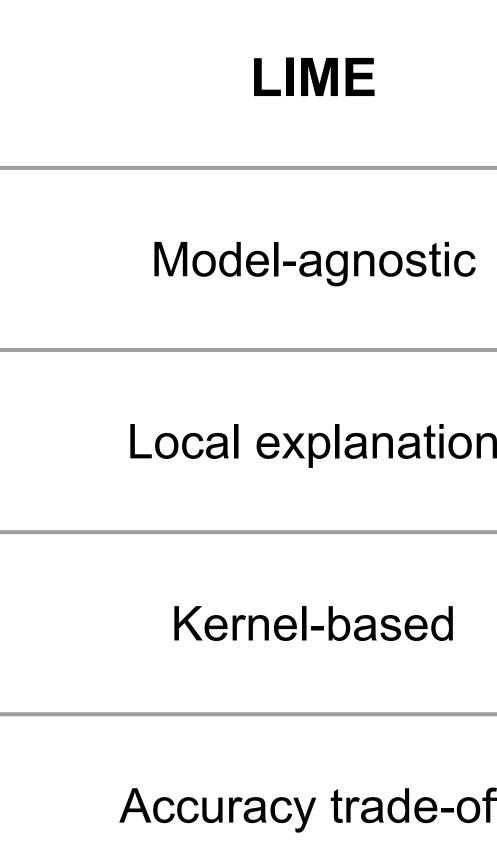
# Thank you!

Reach me at: <u>https://www.linkedin.com/in/ankitajamdade/</u>

# Appendix



## LIME vs SHAP

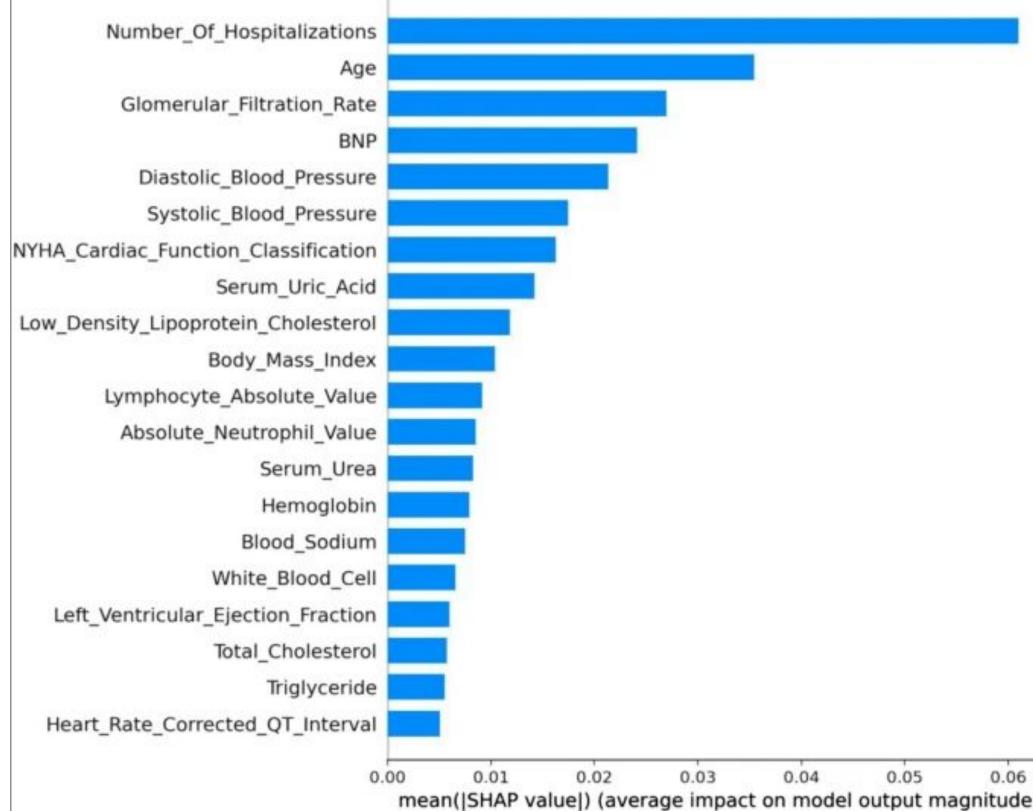


|     | SHAP                    |
|-----|-------------------------|
|     | Model-specific          |
| n   | Global explanation      |
|     | Game-theoretic approach |
| off | Simplicity trade-off    |

## Healthcare use-case 1

#### Interpretable prediction of 3-year all-cause mortality in patients with chronic heart failure based on Machine Learning

(https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02371-5)



|                                      |                 | Hig |
|--------------------------------------|-----------------|-----|
| Number_Of_Hospitalizations           |                 |     |
| Age                                  | *               |     |
| Glomerular_Filtration_Rate           |                 |     |
| BNP                                  |                 |     |
| Diastolic_Blood_Pressure             |                 |     |
| Systolic_Blood_Pressure              |                 |     |
| NYHA_Cardiac_Function_Classification | • 🖛 🔷           |     |
| Serum_Uric_Acid                      |                 |     |
| Low_Density_Lipoprotein_Cholesterol  |                 |     |
| Body_Mass_Index                      | <b>4</b> •••••• |     |
| Lymphocyte_Absolute_Value            |                 |     |
| Total_Cholesterol                    |                 |     |
| Hemoglobin                           |                 |     |
| Serum_Urea                           |                 |     |
| Absolute_Neutrophil_Value            |                 |     |
| Blood_Sodium                         |                 |     |
| Left_Ventricular_Ejection_Fraction   |                 |     |
| White_Blood_Cell                     | ••              |     |
| Triglyceride                         |                 |     |
| Serum_Albumin                        |                 |     |
|                                      |                 |     |

## Healthcare use-case 1 (Continued)

#### Interpretable prediction of 3-year all-cause mortality in patients with chronic heart failure based on Machine Learning

(<u>https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02371-5</u>)





## Healthcare use-case 2

# Data analysis with Shapley values for automatic subject selection in Alzheimer's disease (<u>https://alzres.biomedcentral.com/articles/10.1186/s13195-021-00879-4</u>)

